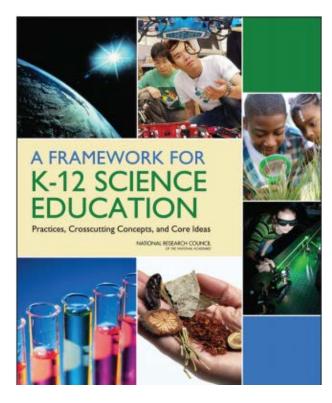
Building Elementary Science Teaching

Summer Institute 2018: Investigations in life sciences

June 18-22, 2018 9:00-3:30 Richmond CA

Ъ

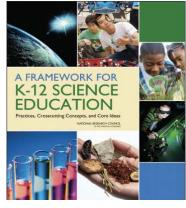
Goals


- •Expand use of NGSS 3-dimensional learning strategies
- •Explore how to effectively develop and support science learning for all students
- •Building literacy skills through science
- •Use the outdoors for scientific exploration and investigation

Monday's agenda

- •Intro
- NGSS review
- •CROSSCUTTING CONCEPTS
- Plant investigations
- •Lunch
- More plant investigations

From inquiry to practices


K-12 science education should reflect the interconnected nature of science as it is practiced and experienced in the real world

Shifting to an NGSS approach

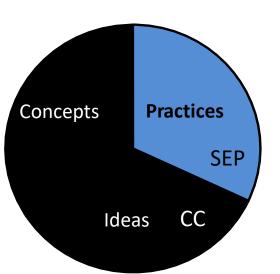
from science inquiry only	to a broader view of science practices
from learning about	to figuring out
from knowing a list of ideas	to knowing how ideas fit together
from simple explanations	to more complex explanations
from knowing that	to knowing why or how

5

Science Standards

A New Vision for Teaching and Learning

Science for ALL Students Three Dimensional Coherent Learning across Grades

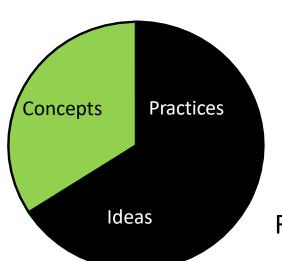

8 Science and Engineering Practices

Next Generation

7 Crosscutting Concepts

Disciplinary Core Ideas

- Physical Sciences
- Life Sciences
- Earth and Space Sciences
- Engineering, Technology, and Applications of Science

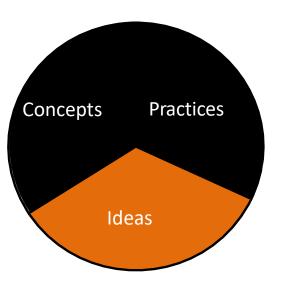

8 Science and Engineering Practices

Knowledge

Skills

What is required to do science or engineering

- 1. Asking questions and defining problems
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Developing explanations and designing solutions
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information


7 Crosscutting Concepts

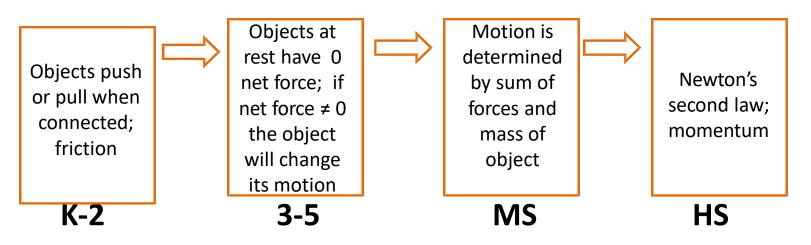
Fundamental

Bridge

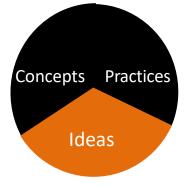
Fundamental concepts that bridge all the ideas

- 1. Patterns organization and classification
- 2. Cause and effect mechanism and explanation
- 3. Scale, proportion, and quantity recognize what is relevant
- 4. Systems and system models define the system under study
- 5. Energy and matter flows, cycles and conservation
- 6. Structure and function determine properties of things
- 7. Stability and change determine rate of change or evolution

Disciplinary Core Ideas


Content

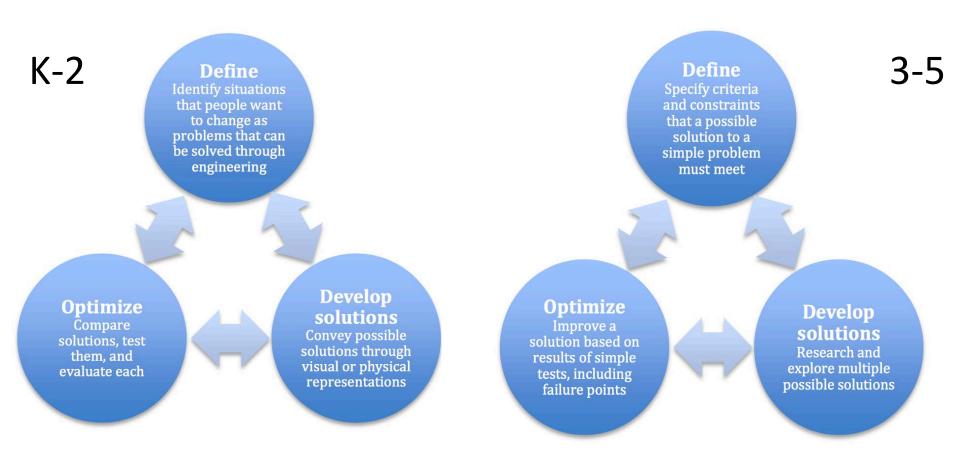
Progression


What to teach and how to lead students through the material

- Sciences (Chemistry and Physics)
- Life Sciences
- Earth and Space Sciences
- Engineering, Technology, & Applications of Science

PS2.A – Forces and Motion

Slide adapted from John Spiegel, San Diego County Office of Education



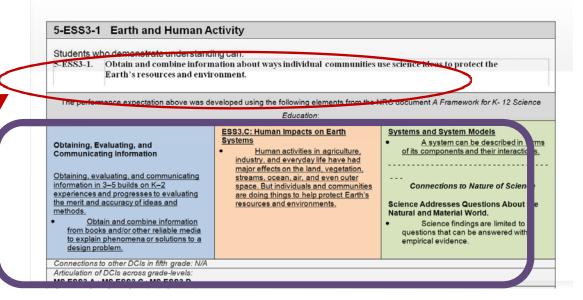
Disciplinary Core Ideas K-12

Content Progression

Life	Science	Physical Science
LS1:	From Molecules to Organisms:	PS1: Matter and Its Interactions
	Structures and Processes	PS2: Motion and Stability: Forces and
LS2:	Ecosystems: Interactions, Energy, and	Interactions
	Dynamics	PS3: Energy
LS3:	Heredity: Inheritance and Variation of	
	Traits	PS4: Waves and Their Applications in Technologies for Information Transfer
LS4:	Biological Evolution: Unity and Diversity	
Ear	th & Space Science	Engineering & Technology
ESS1	: Earth's Place in the Universe	ETS1: Engineering Design
ESS2	: Earth's Systems	ETS2: Links Among Engineering,
ESS3	Earth and Human Activity	Technology, Science, and Society

Engineering Design Process

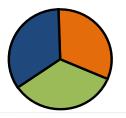
To experience failure does not mean you've failed... It is part of the process.


From NGSS Appendix I

What is the "Standard"?

Standards "NSTA recommends that 'the standard' be defined as the combination of the performance expectations and the contents of the foundation boxes.

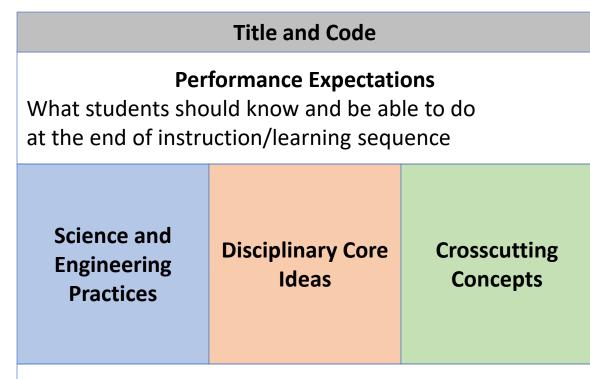
Next Generation


Science

 All Performance Expectations (PEs) and Foundation Boxes are rooted in the framework

Next Generation ScienceStandards

Performance Expectations


What students should **be able to do** after a learning sequence.

Students who demonstrate understand 5-ESS3-1. Obtain and combine inform Earth's resources and envi	nation about ways individual communities u	ise science ideas to protect the
The performance expectation above was d	eveloped using the following elements from the N Education:	IRC document A Framework for K- 12 Science
Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods. • Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem.	ESS3.C: Human Impacts on Earth Systems • Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth's resources and environments.	Systems and System Models A system can be described in terms of its components and their interactions. Connections to Nature of Science Science Addresses Questions About the Natural and Material World. Science findings are limited to questions that can be answered with empirical evidence.

- Guides the writing of state assessment.
- Not a curriculum.

Anatomy and Architecture of a NGSS Standard

Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.

Connections Boxes

Guidance for connecting the standard to others in NGSS or CCSS

MS-PS2-2

CI

Grade Level/Band

PE#

Foundation Boxes

CALIFORNIA STATE BOARD OF EDUCATION

MARCH 2016 AGENDA

The CDE recommends that the State Board of Education (SBE) approve the grades for which the CA NGSS summative assessments will be administered and recommends that the SBE approve the development of three online CA NGSS summative assessments to meet the requirements of the Every Student Succeeds Act and *EC* Section 60640(b)(2)(B) consistent with the proposed test design in Attachment 1:

- Grade five assessment, consisting of grade five performance expectations and matrix sampling of performance expectations from kindergarten through grade four;
- Grade eight assessment, consisting of middle school (grades six through eight) performance expectations;
- Grade ten, eleven, or twelve assessment, consisting of high school performance expectations.